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When writing a computer program, we often use unit tests to check correct-

ness. However, unit testing is insufficient to detect all errors, resulting in

the potential for software bugs. A better way to demonstrate correctness is

to use proofs to guarantee that our program is bug-free. One popular way

of writing proofs is using the Coq Proof Assistant. However, there are a

number of pain points in using it, which affects beginners most.

Structured editors, which allow the user to manipulate structured blocks

corresponding to the abstract syntax of a program, have been used to make

programming more accessible to beginners. However, they have not been

applied to proving thus far.

The objective of this capstone is to build an interactive graphical user

interface for the structured editing of Coq proofs. In this thesis, we present

HenBlocks (available at https://henblocks.github.io), a web-based fully-

fledged structured editor that allows users to write Coq proofs by manipu-

lating blocks. We conclude that structured editing is a promising approach

to proof writing that warrants more exploration, development, and testing.

Keywords: Structured editor, visual programming, theorem prover,

proof assistant, program verification, user interfaces.
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Chapter 1

Background

1.1 Introduction

When writing a computer program, we often use unit tests to check it’s

correctness. However, unit testing is non-exhaustive, and it is possible to

write a program that passes our unit tests but fails on some edge cases. This

is a common source of bugs when deploying programs in the real world.

A better way to demonstrate correctness is to use proofs. By writing a

valid specification for what we want our program to do, writing the pro-

gram, and then proving that our program fulfills the specification, we can

guarantee that our program is bug-free.

One popular way of writing proofs is using the Coq Proof Assistant,

also known as Coq. However, there are a number of pain points in using it

(and proof assistants in general), which especially affects beginners. These

include the complexity of understanding the type system, the difficulty in

learning new specification and tactic languages, and the friction of the user

experiences. The pain points have contributed in part to the lack of main-

stream adoption of proof assistants.

Readers of this thesis are assumed to have a computer science back-

ground with good knowledge in functional programming (e.g. algebraic

data types, pattern matching) and some knowledge in proving.
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1.2 Objective

The aim of this project is to explore the use of structured editing in writing

Coq proofs, and evaluate whether it can help alleviate the aforementioned

pain points and be a good alternative to text editors. This should be accom-

plished by building an interactive graphical user interface (GUI).

1.3 Unit Testing

Unit testing involves writing a set of test cases for a corresponding portion

of code that we wish to test.

In the functional programming paradigm, functions are usually pure,

and they take in inputs and produce corresponding outputs. They do not

mutate any global state and have no side effects. Hence, for the same input,

we can always expect the same output no matter when and how many times

we apply the function.

Typically, the programmer generates a set of inputs and expected out-

puts, ensuring that edge cases are included. Then, the function is applied to

each input, and the actual output is compared with the expected output. If

there are no differences, we can describe the function as having passed the

unit test, and we can deem it to be “correct”.

In the imperative programming paradigm, not all functions are pure,

and functions and methods are typically written to change some non-local

state. The concept of unit testing still applies, but instead of checking that

the output corresponds to what we expect, we might have to verify prop-

erties of the program state (this applies especially for functions that don’t

return anything, also known as void functions).
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However, unit testing is not exhaustive. Although programmers try to

test all possible code paths (i.e. maximising test coverage), it is infeasible

to enumerate and test all cases. Thus, passing a unit test does not guaran-

tee that a function is correct. As explained by Edsger W. Dijkstra, “testing

shows the presence, not the absence of bugs” [5, p. 16].

The potential problems arising from bugs can range from harmless to

disastrous. For example, service outages of online platforms can happen

due to undiscovered bugs being deployed, causing inconvenience to users.

In the worst case, bugs in critical software applications like flight control

systems can result in loss of life.

1.4 Theorem Proving

To combat the aforementioned problems with unit testing, we can use for-

mal verification. This is done by first creating a formal specification of what

we want our program to do. Then, by writing a proof that demonstrates

that our program fulfills the specification, we can guarantee the correctness

of our program.

This method only works if our specification is valid - that it indeed de-

scribes what we want it to. One way of showing validity is to prove that the

specification is non-vacuous (that it is non-contradictory and there is at least

one function that satisfies it) and unambiguous (that it specifies at most one

function).

Proofs can be written in forward reasoning or in backward reasoning. In

forward reasoning, we start from the assumptions that we have and build

upon them to reach the end goal that we want to prove. In backward reason-

ing, we start from the end goal we want to prove and transform it such that
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the transformed goal corresponds with one of our assumptions. In some

cases, we have to split the goal into constituent parts, thus generating sub-

goals for each part. We then have to prove each sub-goal before moving on

to the next one.

In order for a proof to be able to verify a program, the proof itself needs

to be formally verified. This is often done via a proof assistant that mechan-

ically checks the proof, and oftentimes provides additional features such as

automatic theorem proving procedures.

Note that we have the additional problem of ensuring that the proof

assistant itself is correct. In practice, this is not a big issue as the imple-

mentation of the proof assistants are heavily scrutinized by researchers and

code that have been approved form part of the trusted code base. There

is also progress in verifying the proof assistants using the proof assistants

themselves.

1.4.1 Coq Proof Assistant

Coq is an interactive theorem prover that allows users to write proofs inter-

actively and check the state of the proof at each step. Upon completing a

proof, Coq allows the user to extract a certified program in OCaml. Users

usually interface with an Integrated Development Environment (IDE) such

as CoqIDE (ships with Coq), Emacs, VSCode, or Vim.

Coq uses the specification language Gallina (which also doubles as the

progamming language of Coq). The syntax of Gallina is based on OCaml.

However, unlike OCaml, Gallina is a dependently typed programming lan-

guage, has no imperative features, and is pure (i.e. there are no side effects).



Chapter 1. Background 5

FIGURE 1.1: Screenshot of CoqIDE

As a dependently typed1 programming language, Gallina can express uni-

versal (i.e. ∀) and existential quantification (i.e. ∃).

Coq also has the Vernacular language, which provides top-level com-

mands (e.g. the Definition command which defines a function). All com-

mands start with a capital letter and end with a dot (e.g. Check 0., Qed.).

While the user must write specifications and programs in Gallina, they

can choose to write proofs either using tactics (via the Ltac language) or

directly providing proof terms. Tactics are the more common option (espe-

cially for beginners), as they abstract away complexity and allow us to build

proof terms incrementally. Using proof terms "requires more expertise and

is usually tedious" [18].

Coq has been used for a variety of applications, including building a for-

mally verified C compiler, CompCert, which has been demonstrated to be

more reliable than other common C compilers that have not been formally

1Dependent types are types whose definition depends on a value
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verified [21]. Coq has also been used to prove mathematical theorems such

as the four colour theorem [13].

1.5 Structured Editing

In its most basic form, structured editing is ubiquitous. When we use a key-

board shortcut or press a button to make text bold (e.g. in a document editor,

email client, or messaging application), we are employing structured edit-

ing techniques. Behind the scenes, the software adds corresponding code to

display that portion of text as bold (e.g. if the software uses HTML, it would

add the <b> tag before the portion of text and </b> after).

Put more formally, structured editing is manipulation of underlying text

content in a syntax-directed manner. This means that instead of the user

making low-level edits by directly modifying text (e.g. adding/removing

characters), the editor helps them make higher-level edits that require aware-

ness of the syntax of the content. Such underlying text content can be of a

programming language (e.g. OCaml), marked up text (e.g. HTML), etc.

Editors implement varying degrees of structured editing. On one end

of the spectrum, we have basic text editors that have no structured editing

support, such as Windows Notepad which has minimal functionality (no

support for making a portion of the text bold etc.). At this level, users have

to make edits character by character (or by copying and pasting).

In the middle, we have text editors with some structured editing sup-

port. Examples include the Integrated Development Environments (IDEs)

made by JetBrains (e.g. IntelliJ IDEA, PyCharm, WebStorm). They provide

functionality to rename a variable/function and all of its usages (note that

this is not a mere find-and-replace operation), as well as code completion
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(e.g. listing out variables/functions that were defined elsewhere in the file).

At this level, users can still make edits character by character, but can also

employ structured editing functionality which triggers a high-level modifi-

cation. However, it is usually the case that such functionality requires the

text to be syntactically correct and complete. This is because the editor has

to parse the text in order to be aware of its structure and abstract syntax tree,

and such parsing cannot be completed in the event of a syntax error.

On the other end of the spectrum, we have fully-fledged structured edi-

tors. These include visual editors, also known as WYSIWYG (What You See

Is What You Get) editors, such as website editors (e.g. Wix, Weebly, Squares-

pace) and slide presentation software (e.g. Microsoft PowerPoint, Google

Slides). At this level, users cannot directly edit the underlying text (e.g.

HTML for website editor, XML for slide presentation software). Instead,

they manipulate higher level representations such as blocks, text boxes,

shapes, etc. The software then translates modifications of the representa-

tions into modifications of the underlying text.

With such editors, it is usually not possible to have incorrect syntax. This

is because the editor generates the output syntax from the higher level rep-

resentations. Assuming that the generative rules underlying the representa-

tions adheres to the grammar rules of the underlying text, any action taken

by the user would correspond to a legal modification of the syntax.

To provide a more concrete illustration about structured editors, let us

explore two examples: Scratch and Hazel.
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FIGURE 1.2: Screenshot of the Scratch editor

1.5.1 Scratch

Scratch is a visual programming language editor primarily designed to teach

programming to children. Scratch is considered a fully-fledged structured

editor as users cannot directly edit the source code. Users are presented

with a series of blocks (in the block palette on the left of the screen) that cor-

respond to programming constructs (e.g. conditional statement, variable

assignment). These blocks are draggable into the coding area, where they

can be arranged to form scripts.

Some blocks have holes for the user to type in values (e.g. strings and

integers) or slot in a compatible block that reports a value (e.g. variable).

Other blocks have spaces for blocks to be nested (e.g. repeat block which

corresponds to a for loop) and connectors to chain blocks together, similar

to a jigsaw puzzle. Through the usage of these blocks, Scratch is Turing-

complete, which means that any computation possible in another general-

purpose programming language is also possible in Scratch.
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The blocks ensure that users do not have to worry about syntax (e.g. a

missing semicolon, or the syntax of a for loop). Additionally, by differenti-

ating block types and imposing rules on what type of blocks can be used,

it is not possible to write code that has incorrect syntax, allowing the user

to focus on expressing what they want the code to accomplish. By listing

the available blocks in the block palette, Scratch also enables vocabulary

discovery, reminding the user of new features that they can explore.

Scratch was released in 2007 and is still actively maintained. It sees over

100 million website visits each month. It is also currently being used in the

first week of CS50, Harvard’s famed introductory computer science course,

as a gentle introduction to programming. Research has shown that learning

with Scratch improves students’ logical thinking and problem solving [16].

1.5.2 Hazel

FIGURE 1.3: Screenshot of the Hazel editor
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Hazel is an online functional programming editor intended as an explo-

ration of the semantics of incomplete programs. It is also being used as

a teaching tool for functional programming. On the left sidebar, users are

presented with a series of edit actions that can be taken, which include nav-

igation (e.g. moving by arrow keys), general editing (e.g. creating a new

line), and inserting programming constructs (e.g. function). The actions

are taken via clicking or keyboard shortcuts. With keyboard shortcuts, the

experience is more seamless and similar to that of a regular text editor.

Hazel is also considered a fully-fledged structured editor as users cannot

directly edit the source code (although it might seem possible). For example,

users cannot edit the individual characters of a "case" expression; They can

only type in designated places or delete the whole expression.

Initially, there is a single hole in the editor, which can be filled via edit

actions. When inserting a programming construct, a "block" takes the place

of the initial hole, and it may have additional holes to be filled. For example,

a lambda function has a hole for the input parameter and a hole for the

function body. Such holes can be further nested and filled via edit actions.

There are rules on what edit actions can be taken depending on what the

hole requires. Hazel also provides useful information such as the required

type to fill a particular hole, and the available variables that are in scope.

In comparison to Scratch, Hazel can be considered a less restrictive struc-

tured editor. Semantic errors are more common, such as referencing vari-

ables that have not yet been created. Such errors are shown to the user in

real-time. Unlike text editors with structured editing support, Hazel is able

to identify and display such errors even if the program is incomplete, be-

cause of the well-formed structure that it enforces.
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Chapter 2

Motivation

2.1 Pain Points of Coq

There are a number of pain points in using Coq and other proof assistants.

First, the type system is complex and difficult to understand. Proof as-

sistants require dependently typed programming, which beginners do not

typically encounter in typical functional programming. Additionally, users

have to explicitly provide a type parameter for polymorphic functions/quan-

tifiers. Such complexities contribute to the difficulty in making "proper

mental models for what happens ’behind the scenes’ when [interacting]

with a proof assistant" [18].

Second, there is difficulty in learning new specification and tactic lan-

guages. While seemingly similar to their functional programming counter-

parts, such languages have different rules and a tremendous amount of new

vocabulary. When some researchers used Coq to teach textbook proofs, they

defined their own tactics instead of using built-in tactics, because Coq tac-

tics "have unstructured names and are therefore hard to remember" [6]. For

example, it is not immediately clear that the split tactic is used to generate

two subgoals corresponding to a logical conjunction in the goals.

Additionally, there are multiple ways of accomplishing the same thing.

For example, to define a constructor of an inductive type, one can specify
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just the types of the parameters (and the constructor) using annotations (e.g.

| S : nat -> nat) or specify the names and types of the parameters (e.g.

| S (n : nat)). There is thus no single obvious way to follow, especially

since different courses and resources use different conventions.

Some tactics (e.g. destruct) sometimes create subgoals (e.g. in the case

of a disjunction) and sometimes do not (e.g. in the case of a conjunction).

This can be confusing for the user. Some tactics also accomplish more things

than expected (e.g. the reflexivity tactic does simplification as well).

Third, there is friction in the user experience. One example is that syn-

tax errors are hard to understand. For example, failure to include a period

at the end of a tactic or command (a very common mistake among begin-

ners) could result in one of the following messages: 1) "Syntax error: illegal

begin of vernac. The reference TACTIC_NAME was not found in the cur-

rent environment.", 2) "Syntax error: [ltac_use_default] expected after [tac-

tic] (in [tactic_command]).", 3) "Syntax error: ’.’ expected after [command]

(in [vernac_aux]).". Only the last message is useful to the user.

2.2 Existing Approaches

Fully-fledged structured editing has not been applied to Coq thus far. Addi-

tionally, little research has been done on alternative interfaces to Coq. Here

are some of the limited examples:

1. Prooftree is a program that displays a visualisation of the proof tree

for Coq proofs. This "helps against getting lost between different subgoals"

[20]. The most recent version was released in 2017 and the second-most

recent version is from 2013.
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1. Proof-by-pointing is a principle developed in 1994 whereby the user

can point and click on certain sub-expressions of a goal to perform trans-

formations towards solving it [4]. For example, if the user selects a sub-

expression of a conjunction in the hypotheses, the conjunction is broken up

into the two hypotheses corresponding to the two conjuncts. If the user se-

lects a sub-expression of a conjunction in the goals, then two subgoals are

generated corresponding to the two cases. Although seemingly simple, this

technique is effective because all the basic logical connectives (i.e. conjunc-

tion, disjunction, implication, negation, universal quantification, and exis-

tential quantification) are accounted for. This interface was developed for

Coq in the form of CtCoq [3], which was subsequently replaced by PCoq

[2], which has not been maintained since 2003.

2. Actema is an interface that allows users to construct proofs via drag-

and-drop actions, building on the ideas of proof-by-pointing [7]. For exam-

ple, given two hypotheses ∀x, P(x) =⇒ Q(x) and P(x), the user can drag

the latter to overlap with the antecedent of the former and drop it. Since

both subexpressions correspond exactly (P(x)), the implication rule is ap-

plied and a new hypotheses Q(x) is created. Actema was released in 2022

as a standalone online prototype.

3. PeaCoq provides 3 main functionalities: 1) a visualisation of the proof

tree, 2) a visualisation of the difference in proof state before and after a tac-

tic is used (in the form of a side by side comparison with highlighting), and

3) automatic tactic exploration and suggestion to the user. This solves 3

problems that beginners face: 1) getting lost in the proof tree structure, 2)

difficulty in identifying "effects of a tactic on the proof context", and 3) dif-

ficulty in identifying relevant tactics that can be used for a particular goal
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[18]. PeaCoq was released in 2015 as a standalone web interface similar to

CoqIDE and was most recently updated in 2018.

4. Chick is developed by the same creator as PeaCoq. It is a program-

ming language with syntax similar to Gallina, designed to be able to allow

automated complex refactoring with changes being propagated [18]. For

example, if the user were to rename a variable or function definition, sub-

sequent usages would be automatically renamed. The same applies for re-

ordering of parameters to functions.

While the above tools do provide benefits, they have limitations as well.

Firstly, the proof tree visualisations in ProofTree and PeaCoq are helpful in

the case of complicated proofs and nested subgoals, but such situations are

rare for beginners. For beginner proofs, subgoals are nested usually at most

a few levels deep, and new subgoals are typically created two at a time.

Hence, this is a feature which might be more useful for advanced users.

The same can be said for the complex refactoring provided by Chick, as

evidenced by the creator’s intention of it as a tool for experts.

Additionally, some of the tools (Proof-by-pointing, Actema, Chick) are

either unrelated to proving in Coq or uses a different system. Thus, while

the user may learn and better understand proving concepts, they would not

gain familiarity with writing proofs in Coq.

Lastly, some of these tools are old and no longer maintained (ProofTree,

and PCoq which implements proof-by-pointing).
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Chapter 3

Methods

3.1 Structured Editor

We first have to discuss how we want our structured editor to be designed.

As explained earlier, we can build a fully-fledged structured editor or a text

editor with structured editing support. Based on the prior examples men-

tioned, it seems that text editors are better suited to advanced users who are

already familiar with the language, and can make full use of advanced struc-

tured editing features (e.g. extract method refactoring). Fully fledged struc-

tured editors are better suited to beginners who more easily trip up and get

frustrated by syntax errors. Additionally, looking at the existing approaches

to Coq interfaces, it is clear that although text editors with structured editing

support have been attempted with limited success, fully-fledged structured

editing for Coq has not been attempted thus far. Hence, creating a fully

fledged structured editor would be a novel contribution.

Next, two obvious choices came up: We can implement our structured

editor as 1) a desktop app, or 2) an online web app. The traditional way of

writing proofs involves desktop IDEs (e.g. Emacs) which requires extensive

set up such as the installation of Coq and IDE plugins to support Coq, which

is not well-supported on certain platforms (e.g. Windows). This may turn

away new users who just want to get a taste of it before diving deeper.
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In contrast, an online web app guarantees minimal set up and allows the

user to quickly get started. For example, jsCoq provides an online scratch-

pad to write and evaluate Coq proofs on the web. There are also multi-

ple examples of structured editors implemented as web apps (e.g. Scratch,

Hazel). An added benefit of writing a web app is that it can be exported as

a desktop app using a framework such as Electron. For example, VSCode is

primarily used as a desktop app but is built as a web app using TypeScript.

With these considerations in mind, we decided to implement a web-based

fully-fledged structured editor, especially since it is intended as a tool for

beginners to learn to write proofs.

3.2 Coq APIs

The first step of building the structured editor involved figuring out how

to connect the Coq backend to our editor frontend. Coq ships as a set of

command-line tools: coqtop (the Coq toplevel that provides an interac-

tive mode), coqc (the Coq compiler that provides batch compilation), and

coqchk (the Coq checker that validates compiled libraries).

However, users normally interface with Coq through an IDE (e.g. Co-

qIDE, VSCode, Emacs). These IDEs connect to coqtop to provide an inter-

active proving mode, whereby the user can develop proofs step by step,

evaluate incomplete proofs, and view the goals that need to be proved.

For an IDE to connect to Coq, it has to make use of a backend Application

Programming Interface (API). Information on available APIs are sparse and

not well documented. Nevertheless, there are 3 main APIs: 1) OCaml API,

2) XML Protocol, 3) SerAPI.
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The OCaml API is used by Coq plugins. However, it is “restricted to

Ocaml-friendly environments” [11]. Additionally, the API is constantly chang-

ing, is “difficult to master”, and there is “no official documentation . . . other

than looking at the source code” [10].

Most of the IDEs listed above make use of Coq’s XML protocols. They

interface with coqtop by sending and receiving XML messages. However,

the “amount of serialization boilerplate [is] high” [11], as we would need to

write code in our chosen language to parse and serialize the XML messages.

Recognising the disadvantages of the above two options, a pair of re-

searchers built a new API to overcome them. SerAPI provides an inter-

face (sertop) for interactive proofs, similar to coqtop. Instead of XML, the

API uses S-expressions. It also provides a serialization library (serlib) [11].

While the creators warn that the API is experimental in nature, it has proven

to be the most modern and well-maintained out of the three. SerAPI is used

by jsCoq, which is a JavaScript port of Coq that can be run in a browser.

jsCoq extends SerAPI by providing a JavaScript interface, providing access

to low-level serialized Coq data structures [12].

Based on our evaluation, SerAPI was the most suitable. Additionally,

since jsCoq provides a JavaScript interface, we can write our structured edi-

tor in JavaScript (the primary language for developing web apps) and easily

integrate with jsCoq.

3.3 Blockly Library

Blockly is a JavaScript library released in 2012 for creating visual program-

ming editors. Similar to Scratch (in fact, Scratch 3.0 is built using Blockly), it

uses "interlocking, graphical blocks" to represent programming constructs
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(e.g. conditional statements) [14]. Blockly provides commonly used blocks

(e.g. for loop), but allows developers to define their own blocks as well.

Blockly also comes with the ability to export built-in blocks to JavaScript,

Python, PHP, Lua, or Dart code, and allows developers to extend it with

code generators for other languages. Additionally, Blockly provides a user

interface consisting of a toolbox (containing the types of blocks that can be

used) and a workspace (where users rearrange the blocks they are using).

Blockly suits our purposes because we do not have to write graphical

components from scratch. Instead, we can build on the block-based frame-

work it provides, and focus our time on designing the representation of

Gallina and Ltac constructs as well as implementing the structured editing

features. Blockly is also a well-supported library in active development,

used by hundreds of projects. Finally, with the success that block-based

programming has achieved (through Scratch), it is worthwhile exploring

this approach for writing proofs as well.
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Chapter 4

Solution: HenBlocks

4.1 Introduction

HenBlocks is a web-based fully-fledged structured editor for Coq that I

built using the Blockly library and jsCoq. It can be considered a visual

programming language editor due to the use of graphical blocks to rep-

resent programming and proving constructs. The primary target audience

for HenBlocks is undergraduate students who have some experience with

functional programming but with little or no experience in proving. The in-

tended use case is for such students to learn, discover, and practise proving

with HenBlocks, and eventually transition to writing textual proofs in the

Coq Proof Assistant via a text editor such as CoqIDE or Emacs.

HenBlocks is freely accessible on the internet at https://henblocks.

github.io (readers of this thesis are strongly encouraged to test it out).

Users can dive straight in to building proofs with HenBlocks, or follow the

step-by-step tutorial. The source code can be found at https://github.

com/henblocks/henblocks.github.io.

https://henblocks.github.io
https://henblocks.github.io
https://github.com/henblocks/henblocks.github.io
https://github.com/henblocks/henblocks.github.io
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FIGURE 4.1: Screenshot of HenBlocks

4.2 Interface

The user interface is divided into four sections from left to right: 1) Toolbox,

2) Workspace, 3) Code, and 4) Goals.

1) Toolbox: The leftmost section is an expandable panel that contains

all the types of blocks that can be used. Upon choosing a block, the user

can drag it to the workspace. The toolbox is organised into categories ac-

cording to what kind of constructs the blocks represent: a) Commands, b)

Expressions, c) Propositions, and d) Tactics. There are also 2 additional

categories: Examples, which list out a few example theorems and accom-

panying proofs, as well as Challenges, which list out a few sample theo-

rems without proofs, for users to attempt to prove. Tactics are further or-

ganised into subcategories based on their function: d1) Managing context,

d2) Solving goals, d3) Transforming goals/hypotheses, d4) Transforming

conjunctions/disjunctions in goals, and d5) Transforming conjunctions/dis-

junctions/inductive types in hypotheses.
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2) Workspace: The second section is the workspace, which contains all

the blocks that the user is using. This is where the user will spend most of

their time rearranging and modifying blocks in order to write proofs. Upon

choosing a block, the user can drag the block to this workspace and place

them anywhere they want. They can reposition the block, connect it to other

blocks, or delete it.

3) Code: The third section contains the generated Coq code. Whenever a

change is made in the workspace, the corresponding Coq code is generated

and displayed in this section. This usually happens instantaneously. There

is a button to download the current generated code as a Coq (.v) file, if

the user wishes to open it in another editor (e.g. CoqIDE/Emacs). There

are also 2 buttons to download and upload the XML representation of the

blocks. The generation and parsing of XML representation is handled by the

Blockly library, but the buttons and associated functionality are created from

scratch. Providing such buttons allows the user to share their HenBlocks

creations with other people.

4) Goals: The rightmost section contains the intermediate state of the

currently focused proof. These include the goals and hypotheses at the cur-

rent state. The bottom compartment of this section also displays error mes-

sages (e.g. syntax errors) from the Coq Proof Assistant. The user can step

forward and backward through the Coq code, executing commands or un-

doing them, by pressing the down / up arrows.

If a change is made to the blocks while a portion of the code has already

been evaluated, HenBlocks takes the following approach: 1) If there are no

changes made to the evaluated code (i.e. the changes to the code happen

after the current cursor position), the proof state is not changed. 2) If there
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are changes made to the evaluated code (i.e. the changes happen before

the current cursor position), the proof state reverts to the last unmodified

sentence. This is similar to the user experience in a text editor like CoqIDE.

4.3 Sample Proofs

To illustrate HenBlocks, here are some of the first few proofs and definitions

from Olivier Danvy’s Functional Programming and Proving (FPP) course,

an introductory Coq course at Yale-NUS College.

FIGURE 4.2: Proof that conjunction is commutative, in Hen-
Blocks
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Theorem conjunction_is_commutative :
forall (P Q: Prop),

P /\ Q -> Q /\ P.
Proof.

intro P.
intro Q.
intro H_P_and_Q.
destruct H_P_and_Q as [H_P H_Q].
split.
- exact H_Q.
- exact H_P.

Qed.

FIGURE 4.3: Generated Coq code from proof that conjunction
is commutative

FIGURE 4.4: Inductive definition of natural numbers

FIGURE 4.5: Recursive definition of addition functiton
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Chapter 5

Design and Implementation

In this chapter, I go over some of the key design and implementation details

of HenBlocks.

5.1 Grammar

The full grammar of Coq is extremely complex and long. Additionally, since

Coq is extensible via plugins, the whole set of allowable syntax can be in-

creased [1]. Hence, supporting the full grammar (or even a large portion)

would overwhelm the user due to the sheer number of options (apart from

being incredible tedious and beyond the feasibility of a capstone project). As

suggested by the developers of Blockly, “you should keep the set of avail-

able blocks small to avoid frustrating your users” [17]. Furthermore, as ev-

idenced by Danvy’s FPP course, it is possible to accomplish a large amount

by relying on a small subset of tactics and syntax [9].

Apart from relying on a subset of constructs, the grammar of HenBlocks

simplifies certain concepts. For example, in Coq (and in most programming

languages), a binary operator typically has a production rule as such:

<bool> ::= true | false | <identifier> | <bool> && <bool>

With this production rule, it is possible to make nested constructs (e.g. P

&& (Q && (R && (S && T))) which simplifies to P && Q && R && S && T).
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Translating this grammar directly to HenBlocks would require at least 4 &&

blocks to represent that expression. These blocks would be heavily nested,

creating a visual mess. Thus, with HenBlocks, we use a different production

rule:

<bool> ::= true | false | <identifier> | <bool> {&& <bool>}+

Here, this means that the {&& <bool>} component occurs one or more

times. This is accomplished by creating the && block with "plus" and "minus"

icons so that the user can decide on the number of conjuncts present in a

single block. Thus, the above example expression can be constructed using

a single && block, resulting in a cleaner look and simpler process for the user.

Unlike text-based language, there is no top-level/entry point. This means

that it is possible to have any block placed at the “top-level" of the workspace.

This is merely for convenience. When re-ordering blocks, the user may

find it useful to temporarily place some blocks in the “top-level” of the

workspace. This is not to say that such an arrangement is syntactically cor-

rect (e.g. a tactic must be used within the body of a proof). Thus, to prevent

syntax errors, we temporarily disable any blocks that should not be at the

top-level (i.e. they are greyed out, but they can still be moved) which pre-

vents Coq code from being generated from those blocks.

5.2 Variable Dropdowns

In text editors, users can reference any identifier even if the variable was

not previously defined, or is out of scope. The mistake would only be high-

lighted either at runtime or compile time. Some IDEs with structured edit-

ing support (e.g. JetBrains IDEs) provide variable autocompletion - upon

typing a character, a dialog box pops up that indicates the variables that are
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in scope. However, this is not always reliable as it may miss out on vari-

ables, especially in the case of dynamically-typed variables.

In some fully-fledged structured editors (e.g. Scratch), users are confined

to only selecting variables that have been created by the user. However,

such variables have no notion of scope. The code generator automatically

hoists the variable declarations to the start of the code, essentially making

them global variables. This is the case even for function inputs (parameters).

Thus, if the user defines a function with input x, it is possible to use the value

of x outside of the function without having assigned a value. While this is

not a syntactic error, this is a semantic error.

In Coq, variables work similarly to other functional languages - function

parameters can only be used within the function. Global variables/func-

tions can only be used after and not before they have been defined. Sim-

ilarly, quantified variables can only be used within the universal/existen-

tial quantification. In addition, as Coq has tactics which introduce named

hypotheses, these hypotheses can only be used after they have been intro-

duced. Some tactics remove hypotheses (e.g. by destructuring them), thus

making them no longer referenceable.

In HenBlocks, we use an algorithm to automatically list out the variables

that are in scope via a dropdown menu, solving the aforementioned prob-

lems faced by other editors. Through a change listener, the algorithm runs

every time the user makes a change (e.g. a block is added, moved, edited,

or removed). First, we get a list of all the blocks in the workspace from

the Blockly API, ordered by how it appears (top to bottom, left to right).

Then, we go through each block while maintaining a list of identifiers we en-

counter. We then take the next two steps (simultaneously) to handle global
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(free) and local (bound) variables:

FIGURE 5.1: Variable dropdown in HenBlocks

Global Variables: When we encounter a Definition, Inductive, or Theorem

block, we check if the chosen identifier has already been used (i.e. a vari-

able name collision). If yes, we display a warning on that block. If not, we

add the chosen identifier to the list of global identifiers. In addition, for the

Inductive block, we do the same thing for each constructor identifier.

Local Variables: When we encounter a block containing parameters (e.g.

Definition, forall), we go through the parameters defined by the user,

adding them to a list of local identifiers (we also check for name collisions

with global identifiers or previously defined local identifiers). Then, we

traverse through the children blocks. When we encounter a variable block,

we populate the dropdown menu with the list of local and global identifiers.

Certain expressions (e.g. match statements) also allow for the declara-

tion of new identifiers. Thus, upon encountering such expressions, the new

identifier will be added to the list of identifiers. As we use a depth-first

traversal, new identifiers are available only after they have been defined,

and in the correct scope (e.g. an identifier defined in a branch of a match

statement will only be accessible in that branch).
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A similar thing happens for tactics that introduces new (named) hy-

potheses (e.g. intro, destruct, induction). When we encounter a tactic

that removes a hypothesis (e.g. destruct, induction, revert), we remove

the identifier from the list of local identifiers, so they are no longer accessi-

ble after that tactic. If the user deletes a block that defines a variable (e.g. a

parameter to a definition), any existing references to the variable (i.e. blocks

where the user previously selected that variable from the dropdown) will

display a warning, and the dropdown options will no longer display the

removed identifier.

Note that in contrast to other editors / Coq itself, we implement more

restrictions by disallowing (or rather, discouraging through the usage of

warnings) local variables from having the same name as global variables.

This is due to potential for confusion especially among beginners.

5.3 Automatic Renaming of Variables

In text editors, when the user renames a variable in the definition, they also

have to rename the variable in all the places that it is referenced. This can

easily introduce unintended bugs. Some IDEs with structured editing sup-

port (e.g. JetBrains IDEs) provide functionality to automatically rename all

references. This has the possibility of being unreliable, so the user is asked

to verify which references should be renamed if the IDE detects ambiguity.

In some fully-fledged structured editors (e.g. Scratch) where users are

confined to only selecting variables that have been explicitly created, renam-

ing of the original variable automatically renames all usages of the variable.

However, in Scratch, function parameters are not renamed correctly, as they
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are treated as global variables (i.e. If a function parameter is renamed, ref-

erences to the parameter using the old name are untouched, because the

global variable corresponding to the old name still exists. Renaming merely

creates a new variable).

In HenBlocks, we use an algorithm to automatically rename variables,

function/theorem names, and inductive/constructor names, while solving

the above problems. Variable names are defined via text fields. When a

user edits a text field, they have to click on it, placing focus to the field (it

gets highlighted). Then, the user can type characters and edit in any way

they wish to. Once the user is done, they either press the “enter”/“tab” key,

or they click outside of the field. This terminates the text field edit. Thus, a

series of events are generated which correspond to the editing of a text field.

For example if a user were to change the variable “abc” to “apple”, this is

what the series of events might look like (assuming the user adds/removes

a single character at a time):

1. Text modification (old value: “abc”, new value: “ab”)

2. Text modification (old value: “ab”, new value: “a”)

3. Text modification (old value: “a”, new value: “ap”)

4. Text modification (old value: “ap”, new value: “app”)

5. Text modification (old value: “app”, new value: “appl”)

6. Text modification (old value: “appl”, new value: “apple”)

7. Termination of text modification

The algorithm listens for these events to implement the automatic re-

naming of variables. Upon detecting the first modification of a text field,

the algorithm traverses through all blocks after that point and searches for



Chapter 5. Design and Implementation 30

(A) Before renaming (B) After renaming

FIGURE 5.2: Automatic variable renaming in HenBlocks

variable blocks that have the old name selected. Then the old name is modi-

fied to the new name. At the same time, the block is added to a list of blocks

that reference the variable currently being renamed. On subsequent modifi-

cations, we update each block in the list with the new name of the variable.

Storing the blocks in a list improves the efficiency of the algorithm, as we

do not need to spend more time traversing through all blocks to search for

which blocks to edit.

This relies on the invariant that there are no changes to which blocks

reference the variable being renamed. The invariant holds because while

the user is editing the text field, other actions like modifying a block are not

possible. To perform such actions, the user would have to click outside of

the field, terminating the text field edit.

5.4 Automatic Slots for Subgoals

Destructuring a hypothesis (via the destruct tactic) creates subgoals only if

the hypothesis is a disjunction or an inductive type with multiple construc-

tors. The number of subgoals depends on how many constructors the type

has. Typically, the user has to calculate this and put in the corresponding

pattern, and then solve each subgoal. HenBlocks smoothens this process by
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(A) Before (B) After

FIGURE 5.3: Automatic slots for subgoals in HenBlocks

automatically creating the correct number of slots for each subgoal, based

on the pattern put in by the user. This helps the user keep track of the proof

tree. Additionally, the correct hypotheses are directed to the corresponding

slot (i.e. for a disjunction, only the left disjunct is available for selection in

in the first subgoal (via a variable dropdown), while only the right disjunct

is available for selection in the second subgoal.

5.5 Automatic Slots for Constructor Arguments

(A) Before selection of
constructor

(B) After selection

FIGURE 5.4: Automatic slots for constructor arguments in
HenBlocks

Pattern matching requires all arguments of a constructor to be provided

(whether via an identifier, another constructor, or an underscore). Thus, we

can anticipate this and automatically generate the correct number of slots
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according to the number of arguments the constructor excepts. This is pos-

sible by keeping track of the arity of each constructor for each data type.

5.6 Automatic Retrieval of Hypotheses & Goals

When executing a destruct or induction tactic in Coq, we do not actu-

ally have to specify the names of the variables to be introduced (e.g. we

can write destruct n instead of destruct n as [ | n’]. Coq would then

automatically name the variables for the user, and introduce subgoals if

needed. This is not always encouraged as it makes the process more im-

plicit, and the user will have to rely on Coq to name each variable (which

is not always intuitive). However, it is still a valid tactic and there are valid

uses, such as letting Coq automatically compute the conjunctive/disjunc-

tive/case analysis pattern of the variable in question. It would be useful if

our editor can allow the user to employ such a tactic, and retrieve the vari-

able names defined by Coq, as well as the number of subgoals generated.

Then, we would be able to automatically put the names in the variable drop-

down menus, capture the number of variables required, and generate the

appropriate number of subgoal slots. This would be simpler than the user

having to identify which pattern to use. Working with one of the authors of

jsCoq and SerAPI, we succeeded in creating a Coq API command to specula-

tively execute a tactic and retrieve the names of the new variables generated

for each subgoal [15]. For example, performing the command on induction

n (where n is a natural number) would return [[], [n, IHn]]. However,

there was insufficient time to integrate this feature with HenBlocks.
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Chapter 6

Discussion

6.1 Findings

Through the research of this capstone project, we have found that current

interfaces for Coq do not go far enough in simplifying the user experience.

Most interfaces either opt for a text editing approach with some structured

editing, or use a new interface unrelated to Coq. Additionally, non-Coq

structured editors have drawbacks that compromise on the promise of a

simple user experience. In comparison with the existing approaches, Hen-

Blocks attempts to overcome these limitations through providing advanced

structured editing features in a block-based framework. Removing syntax

errors is only the first step in fully-fledged structured editing. HenBlocks

tries to go further by reducing semantic errors as well. This goes a long way

in alleviating the three paint points: difficulty in understanding the complex

type system, difficulty in learning new specification and tactic languages,

and friction in the user experience.

However, building such a fully-fledged structured editor for a complex

system like Coq is a painstaking task. It can be said that the effort may

not be worth it - we could spend the time learning Coq the traditional way.

However, we are developing not for ourselves, but for beginners who have

a fundamentally different perspective. That requires making compromises
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and simplifications, even if that means not supporting all variants of a tactic.

Through these compromises, we find that it provides a framework for a

flatter learning curve.

6.2 Limitations

One limitation of HenBlocks is the potential for visual clutter. Blocks natu-

rally take up more space, and compound expressions may require multiple

levels of nesting. Hence, code that would normally look concise has to be

stretched out when represented as blocks. Another limitation is that drag-

ging and dropping is slower than typing. Users accustomed to coding and

navigating via keyboard shortcuts may feel constrained by the need to use

the mouse. Additionally, as HenBlocks currently has a limited number of

constructs and tactics that are represented, users seeking to expand their

vocabulary or use advanced techniques (e.g. using semicolons to apply tac-

tics to all subgoals) have to turn to standard text editors.

However, this limitation is somewhat mitigated by the fact that Hen-

Blocks is intended for beginner users and that users should have an "exit

strategy" for transitioning to text editors, as emphasised by the developers

of Blockly [8]. In HenBlocks, the transitioned is aided by the similarity of

blocks to actual Gallina and Ltac code, as well as the display of the gener-

ated Code code in the interface.

6.3 Future Work

Testing: First, there needs to be rigorous user testing of HenBlocks to evalu-

ate its effectiveness. Due to the relatively small scope of a Capstone project,
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a usability test of HenBlocks is not feasible. However, based on anecdotal

feedback, users had a positive reaction to HenBlocks, and even found it fun

to interact with.

One possibility is via A/B testing, by having two randomised groups

(one group using HenBlocks and the other group using a text editor). The

participants should undergo a series of tutorials and then be tested on their

understanding and ability to write proofs. Another possibility is to have

the participants use both HenBlocks and a text editor (instead of just one),

and to complete the System Usability Scale (SUS) [19] to compare the rel-

ative usability of both systems. An additional possibility is a longitudinal

study, where HenBlocks is used in the context of a course in theorem prov-

ing. Apart from user testing, there should also be more developer testing to

ensure the reliability of HenBlocks.

Development: Second, there needs to be work in expanding HenBlocks

by supporting more tactics (and their variants) and constructs (e.g. mod-

ules, record types). Fourth, more advanced structured editing features should

be developed. For example, HenBlocks can be developed to capture the type

information of each function and variable, so that we can perform static type

checking and restrict which variables can be used based on the required

type. Similar to PeaCoq, we can also make suggestions to the user on what

tactics to used based on the current proof state. We can achieve this by either

analysing the blocks, or retrieving contextual information from Coq.

User Experience: Third, there should be work put in to make an interac-

tive tutorial where the instructions are overlaid on the interface and the user

has to complete certain milestones before being allowed to proceed. Build-

ing on this, HenBlocks can be gamified by allowing proof challenges to be
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created and shared among users. Upon successfully completing a proof, the

interface responds accordingly. Relatedly, it would be useful to allow teach-

ers to configure HenBlocks for their class, such as restricting which tactics

can be used, and creating the questions (i.e. theorems to be proved) be-

forehand. Additional features to make the user experience more seamless

should also be developed, such as adding an arrow to the workspace point-

ing to the block that is currently being evaluated by Coq, so that the user

can better understand the process.

6.4 Conclusion

In conclusion, we have made a novel contribution in the world of theo-

rem proving, proof assistants, and user interfaces, by applying fully-fledged

structured editing to proof writing. We have also developed advanced struc-

tured editing features by providing scoped variable dropdown selection,

automatic renaming, automatic slots for subgoals, and automatic slots for

constructor arguments. Fully-fledged structured editing is a promising ap-

proach to proof writing that warrants more exploration, development, and

testing.
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Appendix A

HenBlocks Usage

Here are some common ways to use HenBlocks:

Defining an algebraic data type: First, drag the Inductive block (Toolbox

-> Commands) to the workspace. Specify the name of the type in the first

text field. Specify the name of the first constructor in the corresponding

text field. If this constructor has parameters, click on the plus icon of the

constructor block, which will add a binder block. Specify the name (in the

text field) and type (via the dropdown menu) of the parameter. To add

more parameters of the same type, click on the plus icon of the binder block.

To add more parameters of a different time, click on the plus icon of the

constructor block. To add more constructors, perform the same steps as

before. Control the number of constructors by clicking on the plus/minus

icons of the Inductive block which will increase/decrease the number of

constructor blocks.

Defining a function: First, drag the Definition block (Toolbox -> Com-

mands) to the workspace. Specify the name of the function in the first text

field. Similar to the Inductive block, specify parameters for the function via

the binder blocks. Specify the return type of the function via the dropdown

menu. Then, fill in the body of the function by dragging expression blocks

(Toolbox -> Expressions) to the bottom right slot of the Definition block. For

example, drag a match block to specify a pattern match. Additional blocks
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can be added to fill in remaining slots of the currently chosen blocks.

Writing a proof: First, drag the Theorem block (Toolbox -> Commands)

to the workspace. Specify the name of the theorem in the first text field.

Then, drag proposition blocks (Toolbox -> Propositions) to the slot to define

the theorem. For example, drag a forall block to specify a universal quan-

tification. The parameters of a forall block can be specified via the binder

blocks (similar to the Inductive and Definition block). Additional proposi-

tion (and expression) blocks can be added to fill in remaining slots of the

currently chosen blocks.

Next, drag the Proof block to the workspace and connect it’s top with the

bottom of the Theorem block. Then, drag tactic blocks (Toolbox -> Tactics)

to the mouth of the Proof block to construct the proof.

A.1 Features

Here is a brief overview of some of the features of HenBlocks:

• Provided by Blockly/jsCoq:

– Web-based, no set-up required

– Blocks from previous session automatically restored

– Delete all blocks with 2 clicks, and restore blocks from trash bin

• Developed from scratch:

– Generation of syntactically-correct code (assuming all slots are

filled), exportable to .v files

– Selection of variable via dropdowns

– Warnings for undeclared variables and duplicate variables

– Automatic validation of variable names (reserved keywords, le-

gal symbols)
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– Automatic renaming of variables

– Automatic slots for subgoals

– Automatic slots for constructor arguments
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